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What is a ring?

Some Ring Examples

A ring is a set with two binary operations that play nice and one
makes the set an Abelian group.

Example

1 Z

2 Q

3 R[x , y , z] =
{polynomials in the indeterminatesx , y , z with coefficients inR}.

4 Mn(R) = {n × n matrices with entries in the ringR}.

We’ll assume all our rings are commutative and have unity.
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What is a ring?

Ideals

An ideal I of a ring R is a subring of R with the additional
property that for all a ∈ I and r ∈ R, ar ∈ I.

Example

1 In Z all multiples of 3 form an ideal, denoted 〈3〉.
2 In R[x , y , z] all polynomials with each term divisible by at

least one of x or y form an ideal, denoted 〈x , y〉.

3 In M2(R) all multiples of
[

1 0
0 0

]

form an ideal.
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What is a ring?

Quotient Rings

R
I is the set of equivalence classes under the relation a ≡ b iff
a − b ∈ I. We usually denote the equivalence classes by a + I.

Example

1 Z

〈3〉 and 2 + 〈3〉 = {. . . ,−7,−4,−1, 2, 5, 8, . . .}

2 R[x,y ,z]
〈x,y〉 and

z+〈x , y〉 = {z, z+x , z+y , z+x−5y , z+x2y3z8+4z6y7, . . .}.
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Rings in unusual places

Some areas where rings might be useful

Phylogenetics

SET R© Game

Gene Networks

Statistics

Game Theory

There are many others, but the first 3 represent recent
developments that I have worked on and the other two I’ve
studied some.
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Rings in unusual places

Phylogenetics: Intro to Evolutionary Bio

Goal: Given sequence (morphological, molecular (DNA),
geographical) data infer a “tree” that describes the evolutionary
descent.

human mouse chickenratdogchimp

How do we build such trees from only knowing the leaves?
This is the study of phylogenetics.
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Rings in unusual places

Phylogenetics: Polynomials

E. neopterum AAAGCCCTCGAATGAGCC
E. nigripinne AAAGCCCTCGGATGAGCC
E. pseudovulatum AAAGCCCTCGAATGAGCC
E. crossopterum AAAGCCCTCGGATGAGCC
E. squamiceps AAGGACCTCGGATGAGCC
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Rings in unusual places

Phylogenetics: Polynomials

E. neopterum AAAGCCCTCGAATGAGCC
E. nigripinne AAAGCCCTCGGATGAGCC
E. pseudovulatum AAAGCCCTCGAATGAGCC
E. crossopterum AAAGCCCTCGGATGAGCC
E. squamiceps AAGGACCTCGGATGAGCC

p̂AAAAA = 4/18 p̂CCCCC = 5/18 p̂GGGGG = 4/18
p̂TTTTT = 2/18 p̂AAAAG = 1/18 p̂CCCCA = 1/18
p̂AGAGG = 1/18

We call these frequency data.

Goal: Polynomials based on a tree and a model that evaluate
to 0 on frequency data for the correct tree and do not for the
wrong tree.
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Rings in unusual places

Phylogenetics: Polynomials

Goal: Polynomials based on a tree and a model that evaluate
to 0 on frequency data for the correct tree and do not for the
wrong tree.

Example

For a 5 fish (taxa) tree, if we assume any of the 4 nucleotides
are equally possible, we might expect the number of GGGGG
patterns to match the number of AAAAA patterns, so a
polynomial representing this is XAAAAA − XGGGGG.
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Rings in unusual places

Phylogenetics: Polynomials

Goal: Polynomials based on a tree and a model that evaluate
to 0 on frequency data for the correct tree and do not for the
wrong tree.

Example

For a 5 fish (taxa) tree, if we assume any of the 4 nucleotides
are equally possible, we might expect the number of GGGGG
patterns to match the number of AAAAA patterns, so a
polynomial representing this is XAAAAA − XGGGGG.

Good polynomial as it is based on the model. It is not useful
because

1 it is based on a very simple model.
2 it is not based on the tree.
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Rings in unusual places

Phylogenetics: Polynomials

Goal: Polynomials based on a tree and a model that evaluate
to 0 on frequency data for the correct tree and do not for the
wrong tree.

Some of what is known:

The full set of polynomials for certain models.

Biologically significant polynomials for several general
models.

It is not known how to effectively use these polynomials with
actual data.
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Rings in unusual places

SET R© Game

Consists of a deck of cards.

Exactly one card for each combination.

Color Number Shape Shade
red 1 oval open

green 2 diamond solid
purple 3 squiggle striped

A SET is a collection of 3 cards such that for every parameter
the cards are all the same or all different.
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Rings in unusual places

SET R© Game

Key Question: What is the maximal number of cards that do not
contain a SET R©?
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Rings in unusual places

SET R© Game

Key Question: What is the maximal number of cards that do not
contain a SET R©?

The answer is 20 for the game, 45 for 5 parameters and open
for ≥ 6 parameters.
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Rings in unusual places

SET R© Game

Key Question: What is the maximal number of cards that do not
contain a SET R©?

The answer is 20 for the game, 45 for 5 parameters and open
for ≥ 6 parameters.

Let R = k [x1, . . . , x81] with each variable corresponding to a
card in the SET R© deck.

Set I to be the ideal generated by xixjxk where xi , xj and xk

correspond to 3 cards that form a SET R©.

Then dim(R/I) is the maximal number of cards not containing a
SET.
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Linear algebra

Introduction

A vectorspace is a set V with a binary operation (vector
addition) that makes it an abelian group along with a field F and
an operation (scalar multiplication) that allows F to act on V in
a nice way.

Example

1 Rn with component addition over the field R. This vector
space has a particularly nice basis, e1, . . . , en where ei has
a 1 in the ith spot and 0’s elsewhere.

2 R[x ] with polynomial addition over R. A basis in this case is
1, x , x2, x3, . . ..
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Linear algebra

Mapping Vector Spaces

Let V be a vector space over R with basis v1, . . . , vn.

Define φ : Rn → V by φ(ei) = vi .

For vectorspaces

It is enough to define a function by what it does to the
basis.

φ is naturally onto, but since V is a vector space it also an
isomorphism.

Define ker φ = {v ∈ Rn | φ(v) = 0}.
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Linear algebra

Mapping Pictures

Let φ : Rn → V by φ(ei) = vi . Then

φ is both surjective and injective (so ker(φ) = {0}).

Use the picture

0 // Rn
φ

// V // 0

to illustrate that the image of one map is the kernel of the
next map.

We’ll use such pictures many more times.
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Linear algebra

Modules

A module is a vectorspace, but the scalars come from a ring
rather than a field.

Example

Let R be a ring.
1 Rn is a module over R with basis e1, . . . , en.
2 R[x ] is a module over R with basis 1, x , x2, . . ..
3 If I is an ideal of R then I is a module over R. It has no

“basis”, but for all the rings we consider it has a finite
generating set.
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Free modules

Intro to Free Modules

Definition

A free module is an R-module that has a basis.

Basis here means the same thing it does for vector spaces.

The module Rn a free module with basis e1, . . . , en.

Just as all vectorspaces over R are isomorphic to Rn, all
free modules over R are isomorphic to Rn.

We want to use Rn to help us understand non-free
modules; particularly ideals and quotient rings.
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Free modules

Mapping Modules

Let M be a module over R with generating set m1, . . . , mn.

Define φ : Rn → M by φ(ei) = mi .

Again, ker φ = {v ∈ Rn | φ(v) = 0}.
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Free modules

Mapping Modules

Let M be a module over R with generating set m1, . . . , mn.

Define φ : Rn → M by φ(ei) = mi .

Again, ker φ = {v ∈ Rn | φ(v) = 0}.

For Modules

It is enough to define a function by what it does to the
generating set.

φ is naturally onto.

φ is not necessarily an isomorphism, so it is possible that
ker(φ) 6= {0}. (It is an isomorphism iff M is free and
m1, . . . , mn is a basis.)
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Free modules

Mapping Modules Example

Example

Let R = R[x , y , z] and I = 〈x2, xy , y2〉. Then

I is an R module with generating set {x2, xy , y2}.

φ maps R3 onto I by

φ(e1) = φ

(





1
0
0





)

= x2, φ(e2) = φ

(





0
1
0





)

= xy, and

φ(e3) = φ

(





0
0
1





)

= y2.

φ

(





3y2

2x
4x − z





)

= 3y2(x2) + 2x(xy) + (4x − z)(y2).

The kernel contains elements like ye1 − xe2 and ye2 − xe3.
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Building free resolutions

Using Maps

Let M be an R-module with generating set {g1, . . . , gn}.

[Example: I = 〈x2, xy , y2〉 ∈ R[x , y , z]]

Then φ : Rn → M with φ(ei) = gi gives a surjective map of the
free module Rn onto M.
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Building free resolutions

Using Maps

Let M be an R-module with generating set {g1, . . . , gn}.

[Example: I = 〈x2, xy , y2〉 ∈ R[x , y , z]]

The picture Rn → M → 0 tells us about the generators of M:

there are n and

a matrix representation of φ,
[

g1 g2 . . . gn
]

shows a
generating set.

[

g1 g2 . . . gn
]















0
1
0
...
0















= g2
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Building free resolutions

Using Maps

Let M be an R-module with generating set {g1, . . . , gn}.

[Example: I = 〈x2, xy , y2〉 ∈ R[x , y , z]]

The picture Rn → M → 0 tells us about the generators of M:

What about the kernel of φ? It may or may not be free.
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Building free resolutions

What about the kernel of φ?

Rn → M → 0

If ker(φ) is free:

We have two free modules that tell us all about the
generators and the relations for the module.

Using theorems about free modules we know lots
(algebraically) about M, in particular if the kernel has m
basis elements, we get the picture

0 // Rm ι // Rn
φ

// M // 0

This is a free resolution of M.
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Building free resolutions

What about the kernel of φ?

If ker(φ) is not free, let n1 be the number of generators of
ker(φ). Then there is a map φ1 : Rn1 → ker(φ).

Rn1

φ1

##GG
GG

GG
GG

G Rn
φ

// M // 0

ker(φ)

ι

;;xxxxxxxx

##GGGGG
GGGG

0

;;wwwwwwwwww

0

Composing φ1 and ι gives a map Rn1 → Rn whose image is the
kernel of φ. Label this map φ1. Now the picture of M is . . .
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Building free resolutions

What about the kernel of φ?

Composing φ1 and ι gives a map Rn1 → Rn whose image is the
kernel of φ. Label this map φ1. Now the picture of M is . . .

Rn1
φ1 // Rn

φ
// M // 0

with im(φ1) = ker(φ)

What about ker(φ1)?
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Building free resolutions

What about ker(φ1)?

Rn1
φ1 //Rn φ

//M //0

and im(φ1) = ker(φ)

Iterate the process:

If ker(φ1) is free of dimension n2 we are done and get the free
resolution.

0 //Rn2 ι //Rn1
φ1 //Rn φ

//M //0
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Building free resolutions

What about ker(φ1)?

Rn1
φ1 //Rn φ

//M //0

and im(φ1) = ker(φ)

If ker(φ1) is not free it has n2 generators. Set
φ2 : Rn2 → ker(φ1) the big picture is

Rn2

φ2

$$HH
HH

HH
HH

H Rn1

φ1

##GG
GG

GG
GG

G Rn
φ

// M // 0

ker(φ1)

ι

::vvvvvvvvv

$$II
III

III
II

ker(φ)

ι

;;xxxxxxxx

##GG
GGGGG

GG

0

::uuuuuuuuuu
0

;;wwwwwwwwww

0
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Building free resolutions

What about ker(φ1)?

the big picture is

Rn2

φ2

$$HH
HH

HH
HH

H Rn1

φ1

##GG
GG

GG
GG

G Rn
φ

// M // 0

ker(φ1)

ι

::vvvvvvvvv

$$II
III

III
II

ker(φ)

ι

;;xxxxxxxx

##GG
GGGGG

GG

0

::uuuuuuuuuu
0

;;wwwwwwwwww

0

Composing φ2 and ι we get the new picture

Rn2
φ2 // Rn1

φ1 // Rn
φ

// M // 0

Iterating, we look at ker(φ2).
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Building free resolutions

Theorem (Hilbert Syzygy Theorem, 1̃888)

For modules over polynomial rings over a field, this process
must stop after a finite number of steps, i.e. the kernel will be a
free module after a finite number of iterations.

(Hilbert 1863-1943)
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Building free resolutions

Example

Consider I = 〈x2, xy , y2〉 ∈ k [x , y , z] = R, where k is a field.

3 generators: x2, xy , y2.

3 relations: s1 = ye1 − xe2, s2 = ye2 − xe3, and
s3 = y2e1 − x2e3 (given as elements of R3).

s3 = ys1 − xs2, so s1 and s2 generate the module of
relations.

There are no relations on s1 and s2 the free resolution is

0 // R2

2

6

6

4

y 0
−x y
0 −x

3

7

7

5

// R3

h

x2 xy y2
i

// I // 0
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Building free resolutions

Example

I = 〈x2, xy , y2〉 ∈ k [x , y , z] = R

0 // R2

2

6

6

4

y 0
−x y
0 −x

3

7

7

5

// R3

h

x2 xy y2
i

// I // 0

Macaulay2, Singular, CoCoA, Sage, Magma, others.
Complexity can be very bad.
Some theorems describing the structure.

1966Taylor resolution. Generally not minimal.
Mid 90’s Bayer, Sturmfels give cellular resolutions.
Late 90’s others begin work on combinatorial expressions
of the Betti numbers and some minimal free resolutions.
Last 2 years there has been lots of activity.
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Recent results

Theorem (Visscher, Coyle)

If I is the ideal of the hypergraph generated by the maximal
cliques of a complete multi-partite graph, then the cellular
resolution is a minimal free resolution.

y1 y2

x1 x2 x3 x4
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Recent results

Theorem (Visscher, Coyle)

If I is the ideal of the hypergraph generated by the maximal
cliques of a complete multi-partite graph, then the cellular
resolution is a minimal free resolution.

y1 y2

x1 x2 x3 x4

x1y1 x1y2

x4y1 x4y2

x1y1y2

x4y1y2

x1x2y1y2

0 // R // R6 // R14 // R16 // R8 // I // 0
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Recent results

Theorem (Visscher, Coyle)

If I is the ideal of the hypergraph generated by the maximal
cliques of a complete multi-partite graph, then the cellular
resolution is a minimal free resolution.

x1y1 x1y2

x4y1 x4y2

x1y1y2

x4y1y2

x1x2y1y2

















x1x2x3x4y1y2

x1x2x3x4y1 y2

x1x2x3x4y2 −y1

x1x2x3y1y2 −x4

x1x2x4y1y2 x3

x1x3x4y1y2 −x2

x2x3x4y1y2 x1
















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Recent results

Theorem (Visscher, Coyle)

If I is the ideal of the hypergraph generated by the maximal
cliques of a complete multi-partite graph, then the cellular
resolution is a minimal free resolution.

0 // R

2

6

6

6

6

6

6

6

6

6

6

4

y2

−y1

−x4

x3

−x2

x1

3

7

7

7

7

7

7

7

7

7

7

5

// R6 // R14 // R16 // R8

h

x1y1x2y1 . . .
i

// I // 0
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Recent results

Theorem (Visscher, Coyle)

If I is the ideal of the hypergraph generated by the maximal
cliques of a complete multi-partite graph, then the cellular
resolution is a minimal free resolution.

y1

y2

x1 x2 x3

z1 z2

x3y1z1

x3y2z1

x3y1z2

x3y2z2

x3y1y2z2

x3y1z1z2

E ={{x1, y1, z1}, {x1, y1, z2}, {x1, y2, z1}, {x1, y2, z2},

{x2, y1, z1}, {x2, y1, z2}, {x2, y2, z1}, {x2, y2, z2},

{x3, y1, z1}, {x3, y1, z2}, {x3, y2, z1}, {x3, y2, z2}}
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Recent results

Corollary (Visscher)

The resolution is linear, so the kth graded Betti number for the
ideal of a complete bi-partite graph is

k+1
∑

j=1

(

n
j

)(

m
k − j + 2

)

.

Corollary (Coyle)

The resolution in the multi-partite case is also linear and we get
a combinatorial formula for the kth graded Betti number.
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Recent results

Future

Are there similar results for other complete graphs?

Are there similar results for other partite graphs?

Are there similar results for the full minimal free resolution
for the ideals discussed in Huy Tái Há and Adam Van
Tuyl’s paper “Resolutions of square free monomial ideals
via facet ideals: a survey” found in the mathematics arXiv
and related papers?

In general finding combinatorial structures for minimal free
resolutions of monomial ideals is a useful and open question.
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